锈周刊 -> Weekly :: China -

RR23W48.md

# Rust概览 48/2023 原文: [Rust recap for week 48/2023 \- discu\.eu](https://discu.eu/weekly/rust/2023/48/) - 2301127 [Zoom.Quiet](http://zoomquiet.io/)(大妈) 用时 17 分钟 完成格式转抄 - 2301127 [Zoom.Quiet](http://zoomquiet.io/)(大妈) 用时 42 分钟 完成快译 ----------------------------------------- ## 文章/嗯哼... > Articles - [Rust std fs 比 Python 慢!?不,是硬件](https://xuanwo.io/2023/04-rust-std-fs-slower-than-python/) + [398 评注 in 5 讨论s]() (`是也乎:` 说到根儿上了... ) - [Prettier 获得 2 万美元赏金,用 Rust 重写](https://prettier.io/blog/2023/11/27/20k-bounty-was-claimed) + [335 评注 in 2 讨论s](https://discu.eu/q/https://prettier.io/blog/2023/11/27/20k-bounty-was-claimed) - [要审查我的单链表的“remove()”实现](https://rust-unofficial.github.io/too-many-lists) + [303 评注 in 9 讨论s](https://discu.eu/q/https://rust-unofficial.github.io/too-many-lists) - [全面推出适用于 Rust 的 AWS 开发工具包](https://aws.amazon.com/blogs/developer/announcing-general-availability-of-the-aws-sdk-for-rust/) + [135 评注 in 3 讨论s](https://discu.eu/q/https://aws.amazon.com/blogs/developer/announcing-general-availability-of-the-aws-sdk-for-rust/) (`是也乎:` 如果开发体验超过官方社区的, 那就尴尬了... ) - [Serverless Speed: AWS Lambda 函数中的 Rust 与 Go、Java 和 Python](https://blog.scanner.dev/serverless-speed-rust-vs-go-java-python-in-aws-lambda-functions/) + [129 评注 in 2 讨论s](https://discu.eu/q/https://blog.scanner.dev/serverless-speed-rust-vs-go-java-python-in-aws-lambda-functions/) - [新 Tokio 博客文章:宣布 axum 0.7](https://tokio.rs/blog/2023-11-27-announcing-axum-0-7-0) + [105 评注 in 1 讨论](https://discu.eu/q/https://tokio.rs/blog/2023-11-27-announcing-axum-0-7-0) - [从头开始设计 SIMD 算法](https://mcyoung.xyz/2023/11/27/simd-base64/) + [93 评注 in 3 讨论s](https://discu.eu/q/https://mcyoung.xyz/2023/11/27/simd-base64/) - [poll_next  轮询下一个](https://without.boats/blog/poll-next/) + [76 评注 in 3 讨论s](https://discu.eu/q/https://without.boats/blog/poll-next/) - [Rust 临时生命周期和 "super let"](https://blog.m-ou.se/super-let/) + [69 评注 in 1 讨论](https://discu.eu/q/https://blog.m-ou.se/super-let/) - [Rustlantis: Rust 编译器和解释器的语义模糊测试](https://ethz.ch/content/dam/ethz/special-interest/infk/inst-pls/plf-dam/documents/StudentProjects/MasterTheses/2023-Andy-Thesis.pdf) + [65 评注 in 2 讨论s](https://discu.eu/q/https://ethz.ch/content/dam/ethz/special-interest/infk/inst-pls/plf-dam/documents/StudentProjects/MasterTheses/2023-Andy-Thesis.pdf) - [COSMIC Edit, COSMIC 桌面的文本编辑器,使用 ripgrep 的 grep 库进行项目范围的搜索](https://fosstodon.org/@soller/111500090113190028) + [41 评注 in 2 讨论s](https://discu.eu/q/https://fosstodon.org/%40soller/111500090113190028) - [RFC:在解决依赖关系时,使 Cargo 尊重最低支持的 Rust 版本 (MSRV)](https://github.com/rust-lang/rfcs/pull/3537) + [28 评注 in 1 讨论](https://discu.eu/q/https://github.com/rust-lang/rfcs/pull/3537) (`是也乎:` 历史包袱看起来还是得扛... ) - [rustls 0.22 已推出,提供可插入加密货币提供程序和更好的 CRL 支持](https://github.com/rustls/rustls/releases/tag/v/0.22.0) + [26 评注 in 1 讨论]() - [寻找完美的 Fold](https://thunderseethe.dev/posts/in-search-of-the-perfect-fold/) + [26 评注 in 2 讨论s](https://discu.eu/q/https://thunderseethe.dev/posts/in-search-of-the-perfect-fold/) - [mem_dbg 是一个用于递归计算数据结构的内存使用情况或打印其布局的包](https://crates.io/crates/mem_dbg) + [19 评注 in 1 讨论](https://discu.eu/q/https://crates.io/crates/mem_dbg) ----------------------------------------- ## 发布/版本... > Releases - [Kellnr - Rust Crate 注册表 - 版本 5.0.0 已发布](https://kellnr.io/blog/release5) + [8 评注 in 1 讨论](https://discu.eu/q/https://kellnr.io/blog/release5) - [hipstr 新版本:0.4.0](https://crates.io/crates/hipstr) + [5 评注 in 1 讨论](https://discu.eu/q/https://crates.io/crates/hipstr) (`是也乎:` > Rust 的另一个字符串🦀 是的, 原生字符串包含太多糟点了... ) - [KCL v0.7 发布!更全面的模块、语言和工具](https://kcl-lang.io/blog/2023-11-30-kcl-0.7.0-release) + [3 评注 in 1 讨论](https://discu.eu/q/https://kcl-lang.io/blog/2023-11-30-kcl-0.7.0-release) - [Arroyo 0.8 发布,改进了 Rust UDF 支持](https://github.com/ArroyoSystems/arroyo/releases/tag/v0.8.0) + [2 评注 in 1 讨论](https://discu.eu/q/https://github.com/ArroyoSystems/arroyo/releases/tag/v0.8.0) - [Web 服务框架 springtime-web-axum 发布,提供最新的 axum 支持](https://crates.io/crates/springtime-web-axum) ----------------------------------------- ## 好物/妙品/... > projects - [Rust 编写的类似 SQL 的查询语言,可在本地 git 存储库上运行](https://github.com/AmrDeveloper/GQL) + [207 评注 in 15 讨论s](https://discu.eu/q/https://github.com/AmrDeveloper/GQL) (`是也乎:` 叕一个 git 数据库 SQL 解析引擎, 所以, 当前 git 仓库泛滥已经到了需要开始结构化查询的地步? ) - [具有复制/集群功能的嵌入式数据库](https://github.com/rqlite/rqlite) + [138 评注 in 7 讨论s](https://discu.eu/q/https://github.com/rqlite/rqlite) - [Steel – 可嵌入且可扩展的Scheme方言](https://github.com/mattwparas/steel) + [113 评注 in 1 讨论](https://discu.eu/q/https://github.com/mattwparas/steel) (`是也乎:` 项目名称很得趣了... 用 Lisp 语法来改进 Rust 的开发体验, 很不错的思路方向; 只是, 不知道如何变成生产应用... ) - [Concoct UI v0.8: 跨平台UI框架](https://github.com/concoct-rs/concoct) + [69 评注 in 11 讨论s](https://discu.eu/q/https://github.com/concoct-rs/concoct) (`是也乎:` 叕一个跨平台框架 ) - [发布 WTransport 0.1.9 - Rust 的 Web 传输库](https://github.com/BiagioFesta/wtransport) + [8 评注 in 2 讨论s](https://discu.eu/q/https://github.com/BiagioFesta/wtransport) - [从函数生成命令的参数解析器](https://github.com/LaSpruca/argster) + [7 评注 in 1 讨论](https://discu.eu/q/https://github.com/LaSpruca/argster) - [Show HN: Fluvio – 用 Rust 和 WASM 编写的分布式流处理系统](https://github.com/infinyon/fluvio) + [7 评注 in 2 讨论s](https://discu.eu/q/https://github.com/infinyon/fluvio) - [学习 Rust:编写一个简单的负载均衡器](https://github.com/jdockerty/gruglb) + [6 评注 in 1 讨论](https://discu.eu/q/https://github.com/jdockerty/gruglb) (`是也乎:` 和 OpenResty 的 Lua 插件相比? ) - [用 Rust 和 C++ 编写了一个 After Effects 插件](https://github.com/mobile-bungalow/tweak_shader_after_effects) + [6 评注 in 1 讨论](https://discu.eu/q/https://github.com/mobile-bungalow/tweak_shader_after_effects) (`是也乎:` 这种对比...就很唯心了 ) - [Robyn – Rust 中的 Python Web 框架](https://github.com/sparckles/Robyn) + [5 评注 in 2 讨论s](https://discu.eu/q/https://github.com/sparckles/Robyn) (`是也乎:` Django 样的框架... ![architecture](https://robyn.tech/architecture/architecture.png) ) ----------------------------------------- ## 视频 > Videos - [被 Prime(Youtuber)嘲笑了——但我却爱上了它。为什么 C++ 比 Rust 更好。](https://www.youtube.com/watch?v=Wz0H8HFkI9U) + [228 评注 in 1 讨论](https://discu.eu/q/https://www.youtube.com/watch?v=Wz0H8HFkI9U) (`是也乎:` 关键还是开发体验吧... 真的要 PK 运行效能, 没谁比得过 汇编的... ) - [用 Rust 重建 Apple 计算器](https://youtu.be/sl0rDttMrIc) + [17 评注 in 1 讨论](https://discu.eu/q/https://youtu.be/sl0rDttMrIc) - [最近开始探索适用于 Rust 的 AWS SDK,并想尝试分享我在这里学到的东西。希望这可以帮助!](https://youtu.be/lnPjJBgAoJ8?si=lo4y_3VCpElorsi9) + [16 评注 in 1 讨论](https://discu.eu/q/https://youtu.be/lnPjJBgAoJ8?si=lo4y_3VCpElorsi9) - [Axum 0.6 至 0.7 的快速步骤](https://www.youtube.com/watch?list=PL7r-PXl6ZPcCIOFaL7nVHXZvBmHNhrh_Q&v=MvWCX5ckuDE) + [6 评注 in 1 讨论](https://discu.eu/q/https://www.youtube.com/watch?list=PL7r-PXl6ZPcCIOFaL7nVHXZvBmHNhrh_Q&v=MvWCX5ckuDE) - [如何对抗借用检查员……并获胜。](https://www.youtube.com/watch?v=Pg07HQJ0tvI) - [Amazon CTO “没有理由不使用 Rust 构建服务......”](https://youtu.be/UTRBVPvzt9w?t=3730) (`是也乎:` 哈, 哪次不是 Amazon 先开始忽悠的... ) - [Tsoding 日报:从头开始的 proc 宏](https://youtu.be/LQ2rX5B0DUA?si=vnA-z-39VMKPuHXq) ----------------------------------------- ## DAMA > ❤️ Happy Pythonic ;-(`大妈私人无责任播报`) - [@Chaos42DAMA - YouTube](https://www.youtube.com/@Chaos42DAMA) + VLog + 大妈的多重宇宙... - [Zoom\.Quiet’s Chaos42 \| Substack](https://zoomquiet.substack.com/) + 古早:新闻组式写作 + 欢迎订阅, 包含当前周刊 ``` _~~+∽~_ \/ / ^ ^ \ () '_ ⌐ _' / '--.--' ) ...act by ferris-actor v0.2.4 (built on 23.0303.201916) ``` ----------------------------------------- # PS: - 首发: [Rust概览 48/2023 ~ 锈览上周主要 ;-)](https://weekly.rs.101.so/2023/RR23W48.html) - 修订: [RR23W48.md](https://github.com/zhrust/weekly/tree/main/docs/2023/RR23W48.md) ## PPS: 不觉中[~ 蠎周刊 ~ 汇集全球蠎事儿 ;-)](https://weekly.pychina.org/)快译已经到了第11个年头 Rustaceans 世界当然也有相似周刊, 那就一起呗; 问为什么: [皱眉]每周新闻资讯 怎么能错过 看看有什么新东西 当有新的发现时: what f**k 还能这样玩? 还有这东西? 每周开彩蛋[吃瓜] `无法同意更多`... 很多社区贡献看起来辛苦, 其实受益最多的, 就是主动承担者也. ------------- 好文笔,感叹号年度配额: **2/3** 投稿/反馈邮箱: askdama@googlegroups.com (邮件列表地址, 当成正常邮件发送邮件就好, 不用注册, 不用翻越...) ------------- ZoomQuiet/**[大妈](https://mp.weixin.qq.com/s/N5TuRRbF558D4Q90XdDA7g)** 就是四处 `是也乎,( ̄▽ ̄)` 的那个[大妈](https://mp.weixin.qq.com/s/N5TuRRbF558D4Q90XdDA7g): ```python 全职嗯哼: 大妈的多重宇宙 - https://www.youtube.com/@Chaos42DAMA 私自嗯哼: ZoomQuiet (订阅号: ZoomQuiet42) 公开社群: 蟒营 (订阅号: Mainium) as 创始组织者: CPyUG (mailling-list: python-cn@googlegroups.com) PyChina (订阅号: PyChinaOrg) 本地社区: GDG珠海 (订阅号: GDG-ZhuHai) AIGC珠海 ``` -------------

AI生成摘要 本周Rust的重点回顾包括新的字符串库、Git数据库SQL解析引擎和用Lisp语法改进Rust开发体验的项目。此外,还有关于开发体验和性能的视频讨论。

相关推荐 去reddit讨论

MongoDB -

How Canara HSBC Life Insurance Optimized Costs and Claims Processing with MongoDB

Since 2008, Canara HSBC Life Insurance has focused relentlessly on bringing a fresh perspective to an industry known more for stability and conservatism rather than innovation. Since its inception in 2008 as a joint venture between Canara Bank and HSBC Insurance, Canara HSBC Life Insurance has strived to differentiate itself from the competition through enhanced customer interactions, launching cutting-edge digital products, and integrating digital services that cater to the evolving needs of customers. For the past six years Chief Operating Officer, Mr. Sachin Dutta, has been on a mission to bring this customer-first mindset to the digital products and touchpoints his team creates. Speaking at MongoDB’s annual .local developer conference in Delhi, Dutta outlined Canara HSBC Life Insurance’s ongoing digital transformation journey, and how his team's focus on customer success and business efficiency led them to work with MongoDB for improved efficiencies and results. “I truly value the partnership we have with MongoDB. We are building a future-ready organization, and this partnership clearly helps us achieve our aim of reaching the last mile possible in customer servicing. Mr. Sachin Dutta, Chief Operating Officer, Canara HSBC Modernizing the architecture and driving developer efficiency Canara HSBC’s digital transformation was centered on three technical pillars: the cloud, analytics, and mobility. The company focused on creating a more integrated organization and automating manual processes within the system. “We try to remove human intervention with a life insurance policy delivered in seconds and claims that are settled virtually in seconds,” Dutta says. To get there, Canara HSBC Life Insurance had to move on from its existing architecture, which required multifaceted changes and several new implementations: Monolithic applications made alterations a time-consuming process A reliance on rigid relational databases prolonged development timelines, forcing developers to spend time wrangling data when they could be building better products for customers. The fully on-premises system had supported the organization in the past but required future-proofing to support growth and deliver a better customer experience. Because of this valuable development time and money were spent managing, patching, and scaling databases, rather than getting new products into the hands of customers. These technical issues impacted the speed of business, particularly during month-end and year-end data processing, when the volumes were high. In addition, batch processing stood in the way of creating the real-time availability of information customers wanted. Dutta and his senior team also realized that their existing infrastructure would make it more challenging to find the right talent in the market, as the existing infrastructure was increasingly becoming outdated. Dutta realized early on that, in order for Canara HSBC to attract and retain the best and brightest developers, the insurer had to offer the chance to work with the latest technologies. Platforms like MongoDB would be integral to this effort. “I want to create an organization that is attracting talent and where people start to enjoy their work, and that benefit then gets passed on to the customers, ” Mr. Dutta says. Looking to overhaul its existing infrastructure, Canara HSBC Life Insurance wanted to move fast and hire the talent required to best serve its end customers. Dutta summarized the situation succinctly: "We found that some of those relational structures that had worked for us would not take us through the next 10 years.” Migrating to a secure, fully managed database platform After evaluating the solutions on the market, the team decided to transition from their existing on-premises relational databases, like IBM DB2, MySQL, and Postgres, to MongoDB Atlas. In the last six years of my work, I’m pleased to say that MongoDB has seamlessly integrated all the processes in the backend. We migrated from a completely legacy-based setup to the new fully managed MongoDB service to enhance IT productivity Mr. Sachin Dutta The first stage of the journey was moving from monolithic applications and relational databases to a microservices architecture. With its flexible schema and capabilities for redundancy, automation, and scalability, MongoDB served as the best partner to help facilitate the transition. Next, the team moved to modernize key parts of the business, such as underwriting, freeing their data to power more automation in straight-through processing (STP) of policies and faster claims processing. The adoption of a hybrid cloud model shifted Canara HSBC Life Insurance away from on-premises databases to MongoDB Atlas. As a fully managed cloud database, MongoDB Atlas solves issues related to scalability, database management, and overall reliability. MongoDB Atlas is also cloud agnostic, giving the insurance company an option to work with Azure, AWS, and Google Cloud. Mongo Atlas’ BI Connector bridged the gap between MongoDB and traditional BI tools. This seamless integration allowed Canara HSBC Life Insurance to deploy its preferred reporting tools and, when coupled with MongoDB Atlas’ real-time analytics capability, made batch processing a thing of the past. Halving delivery times and driving business efficiencies Moving to MongoDB Atlas has had a profound impact on the breadth of digital experiences Canara HSBC Life Insurance can offer customers and the speed at which new products can be developed. Something that used to take months, with the implementation of our new tools could be completed in a couple of weeks or days Mr. Sachin Dutta And it’s not only the customer experience and product delivery that has benefited from the partnership. Canara HSBC Life Insurance has also realized substantial efficiency gains and savings as a result of working with MongoDB. We are leveraging artificial intelligence as a core capability to predict human behavior and auto-underwrite policies wherein around half of the policies issued today are issued by the system Mr. Sachin Dutta Highlighted results include: Straight-through processing (STP) surged from 37% to an impressive 60%. This is set to increase further with AI/ML integrations and rule suggestions. Policy issuance turnaround time improved by 60%. Efficiency in operations led to a 20% cost-saving per policy issuance. Canara HSBC experienced 2x top-line growth due to seamless integration with analytical tools. Looking ahead, Canara HSBC Life Insurance has already outlined three key areas where the MongoDB partnership will grow. First, Dutta wants to take advantage of MongoDB Atlas’ flexible document data model to collect and organize data on customers from across the business, making MongoDB Atlas the sole database at Canara HSBC Life Insurance and creating a true customer 360 data layer to power sophisticated data analytics. In financial services, this capability is referred to as know your customer (KYC). “We want to build a data layer that provides a unique experience to the customer after getting to know them,” he says. “That’ll help the company generate better NPS scores and retain customers.” Second, the adoption and integration of AI and machine learning tools also factor heavily into future plans. MongoDB Atlas, with its flexible schema, compatibility with various machine learning platforms, and AI-specific features — such as Vector Search and storage — is a good fit for the company. In Dutta's words, "We are going to scale up and capture the GenAI space.” Last, Dutta wants to take advantage of the MongoDB Atlas SQL interface, connectors, and drivers to augment business intelligence for reporting and precise SQL-based report conversions. Learn More about how MongoDB Works with global Insurers

AI生成摘要 Concured是一家AI初创企业,利用人工智能和MongoDB帮助市场营销团队了解受众需求,打造个性化的网站和销售内容。他们的内容推荐系统注重用户隐私,通过用户点击行为推荐相关内容。Concured使用先进的自然语言处理技术和AI支持的网络爬虫来分析和索引网站内容。他们的NLP准确度通过改变算法和网站成功率来评估。首席技术官Tom Wilson加入Concured后决定继续使用MongoDB,并计划使用MongoDB Atlas Serverless来简化技术堆栈。Concured的未来是为更多有海量内容的企业提供个性化的内容推荐服务。

相关推荐 去reddit讨论

爱范儿 -

43.5 万元起,特斯拉 Cybertruck 终于交付,马斯克当初说的都实现了吗?

士别四年,应当……?#欢迎关注爱范儿官方微信公众号:爱范儿(微信号:ifanr),更多精彩内容第一时间为您奉上。 爱范儿 | 原文链接 · 查看评论 · 新浪微博

AI生成摘要 特斯拉Cybertruck终于交付,售价从43.5万元起。虽然与4年前发布的有所不同,但仍有合理性。Cybertruck的续航里程、加速性能和牵引能力都有所提升。然而,Cybertruck面临销量难题,因为美国人更喜欢燃油皮卡,而充电网络不完善。此外,Cybertruck还面临来自Rivian R1T和福特F150-Lightning的竞争。马斯克对Cybertruck的年销量目标设定为25万辆,相对较低。但他仍相信Cybertruck将彻底改变纯电皮卡这一品类。

相关推荐 去reddit讨论

爱范儿 -

早报|五月天被质疑假唱,官方回应/OpenAI 在中国申请 GPT-6 商标/腾讯视频回应「App 崩了」

·苹果正在将更多注意力转向 6G 技术研发 ·12 月 4 日可能发生小到中等地磁暴 ·GPT 商店推迟到 2024 年初上线#欢迎关注爱范儿官方微信公众号:爱范儿(微信号:ifanr),更多精彩内容第一时间为您奉上。 爱范儿 | 原文链接 · 查看评论 · 新浪微博

AI生成摘要 苹果公司将更多注意力转向6G技术研发,招聘工程师研究6G。中国可能发生小到中等地磁暴。摩根大通或将接手苹果卡业务。OpenAI在中国申请GPT-6和GPT-7商标。Google推迟发布竞品Gemini。腾讯视频将于12月31日停止服务。英国摇滚音乐人Peter Gabriel预测AI能创作更好的歌曲。GPT商店推迟到2024年上线。Grok将向X Premium+用户开放访问权限。腾讯视频回应App故障。五月天演唱会被质疑假唱,需时间调查。肯德基推出炸鸡香水。《元梦之星》定档12月15日全平台上线。剧版《辐射》首曝预告。威尔·史密斯透露《我是传奇2》进度。《龙之家族》第二季发布预告。

相关推荐 去reddit讨论

解道jdon.com -

日志代码隐藏巨大性能陷阱

单的场景:我们有一个记录器,它应该只记录特定级别的消息(例如,info和warn)error,但不记录低于它的消息(debug或trace)。在运行时的某个时刻,我们应该能够提高或降低阈值。 一个简单的实现将获取级别并在运行时检查它,无论我们是否允许记录,然后仅在消息级别高于或等于配置的级别时才继续前进并记录。

AI生成摘要 这篇文章讨论了在日志记录中如何优化性能。作者提出了一种使用密封接口和默认方法的解决方案,以减少配置更改的成本并提高代码的可读性。作者通过基准测试证明了这种解决方案的有效性,并强调了现代Java的优势。文章提供了详细的代码示例和性能数据。

相关推荐 去reddit讨论

解道jdon.com -

Airbnb强大的持续交付框架:CRM

集成 Salesforce DX、GIT、BUILDKITE 和 Vlocity 的 CRM CI/CD 框架,以实现增强、高效和持续的交付以及高软件质量。 CRM 平台提供了一套强大的功能,用于构建可扩展的应用程序,同时最大限度地减少对复杂编码的依赖。然而,在这个生态系统中管理和部署代码和配置可能具有挑战性,而且平台不断发展的性质带来了额外的复杂性。这可能会导致部署时间缓慢、难以平衡代码和配置(例如 Apex 类和触发器与验证规则、页面布局)以及管理多个环境等问题。 为了应

AI生成摘要 该文章介绍了Airbnb开发的CRM CI/CD框架,集成了Salesforce DX、GIT、BUILDKITE和Vlocity,以实现高效、持续的交付和高软件质量。该框架解决了CRM平台管理和部署代码和配置的挑战,包括部署时间长、代码和配置平衡困难、管理多个环境复杂等问题。该框架通过将各个环境与Git版本控制系统相关联,并通过Buildkite DevOps管道连接,实现了无缝的开发和部署过程。通过该框架,Airbnb成功减少了部署时间,提高了软件质量,为客户带来更大的价值。

相关推荐 去reddit讨论

解道jdon.com -

Uber以每秒50万个请求的估算乘客到达时间

从 A 点到 B 点的预计旅行时间称为预计到达时间(ETA): Uber 在 4 种情况下计算 ETA: 眼球:当乘客在应用程序中输入目的地时 调度:在最短等待时间内找到接送乘客的车辆 取车:查找接送乘客所需的时间 途中:实时更新到达目的地的时间 一次旅行通常需要约 1000 次 ETA 请求。 然而,计算 ETA 是一个难题。因为出发地和目的地之间的距离不是一条直线

AI生成摘要 Uber计算ETA的方法包括路由算法、交通信息和地图匹配。路由算法将地图表示为图形,通过分区和预计算最佳路径来提高效率。交通信息考虑时间、天气和车辆数量,填充图的边权重以提高准确性。地图匹配通过将GPS信号映射到实际路段来提高准确性。Uber每天完成的出行次数超过1800万次,因此准确的ETA对他们至关重要。目前的方法允许他们将请求扩展到每秒50万个。

相关推荐 去reddit讨论

枫言枫语 -

Vol. 104 科技快乐星球21: 大公司都在挤AI

上一期节目还没发布,Sam Altman就回去OpenAI继续当CEO了,这个AI圈里的人和事变化比变天还快。Sam这通操作直接把同期微软和Github的发布会给淹没下去了。 近期AI的消息很多,在持续一年的由ChatGPT,Stable Diffusion,MidJourney等大热AI产品掀起新一轮科技热潮之后,似乎硅谷所有大公司都挤进了这场竞争。 就让我们跟随今天的科技快乐星球,一起一探究竟吧! *P.S. 感谢《技术播客节》活动邀请,本期节目是参与《技术播客节》的一期。与我台同日更新的还有诸多友台关于AI话题的探讨,感兴趣的小伙伴们可以找来听一听。*技术播客节——让声音,带你领略技术的五彩斑斓 时间轴 00:00:00 开场 00:01:29 Sam altman返回OpenAI担任CEO 00:05:37 微软Ignite大会与Github Universe发布会 00:02:09 OpenAI Plus暂停注册 00:15:49 马一龙的Cybertruck终于发售 00:23:24 基于AI的新随身硬件: Humane AI Pin 00:29:12 苹果允许第三方App Store,禁止摇一摇广告? 00:46:54 小程序短剧爆火 00:51:49 Steam Deck与TGA 2023 00:54:44 近期影视与动漫更新 相关信息 主播: 枫影 … Continue reading → The post Vol. 104 科技快乐星球21: 大公司都在挤AI first appeared on 枫言枫语.

AI生成摘要 Sam Altman has returned to OpenAI as CEO. The AI industry is experiencing rapid changes. After the success of AI products such as ChatGPT and Stable Diffusion, many Silicon Valley companies have entered the competition. The article also mentions other topics such as the release of Cybertruck, the Humane AI Pin, and recent updates in film and animation.

相关推荐 去reddit讨论

蓝点网 -

[征求意见] 微软计划为Windows 11带来开发者模式 让修改系统设置更简单些

目前Windows 11是有开发者模式的但功能极少实用性极低,对开发者来说改设置依然是个比较复杂的问题。 原因 […]

AI生成摘要 微软计划推出新版Dev Home,帮助开发者更好地控制系统设置和提高工作效率。该应用将提供修改系统设置的高级选项,并与开发者社区合作,快速添加新功能。开发者可以通过编写脚本批量应用这些设置。

相关推荐 去reddit讨论

蓝点网 -

终于可以关闭Windows 11小组件面板中的花边资讯 但仅限于...

此前微软考虑到欧盟数字市场法案的各种要求,已经计划在欧洲经济区对Windows 11进行各类优化和改进。 其中 […]

AI生成摘要 微软计划在欧洲经济区对Windows 11进行优化和改进,其中包括禁用必应新闻资讯功能。最新的Windows 11 Dev Build 23595版已添加了禁用选项,但目前简体中文版尚不支持。用户可以通过ViveTool工具禁用新闻资讯功能,但仍会显示其他广告模块。不清楚是否只有欧洲经济区用户可以关闭信息流设置。

相关推荐 去reddit讨论

...
LigaAI
...
白鲸技术栈
...
Dify.AI
...
eolink
...
天勤数据
...
观测云
...
ShowMeBug
推荐或自荐