用高斯 - 勒让德积分快速训练神经 ODE
原文中文,约400字,阅读约需1分钟。发表于: 。通过使用 Gauß-Legendre 积分法加速伴随方法,我们提出了一种加速神经 ODE 训练的新方法,这对大型模型尤为有效,同时也为训练基于 SDE 的模型提供了新的方法。
本文介绍了如何通过整合贝叶斯学习框架来量化神经普通微分方程中权重的不确定性,并展示了在MNIST数据集上使用GPU加速的推理方法成功集成神经ODE的实验结果。同时,证明了变分推理与标准化流和神经ODE的成功整合,生成了强大的贝叶斯神经ODE对象。最后,演示了如何利用常微分方程概率地识别部分描述的动力系统中的模型规范,为探索认识上的不确定性提供了科学的机器学习工具。