在视觉语言概念瓶颈模型中改善概念对齐
发表于: 。通过专家定义的概念而不是语言模型生成的概念构建可靠的 Concept Bottleneck Models(CBM),提出了一种使用少量标注的概念示例改善模型概念对齐的对比半监督学习方法,实验证明该方法显著提高了概念准确度和分类准确度。
通过专家定义的概念而不是语言模型生成的概念构建可靠的 Concept Bottleneck Models(CBM),提出了一种使用少量标注的概念示例改善模型概念对齐的对比半监督学习方法,实验证明该方法显著提高了概念准确度和分类准确度。