通过信心标记学习路由大型语言模型
Large language models (LLMs) have demonstrated impressive performance on several tasks and are increasingly deployed in real-world applications. However, especially in high-stakes settings, it...
大型语言模型(LLMs)在多种任务中表现优异,但在高风险环境中,了解其输出的可靠性至关重要。本文探讨了LLMs如何有效表达答案的信心,并提出了一种轻量级训练策略Self-REF,通过引入信心标记来提升答案准确性。研究表明,信心标记显著改善了后续任务中的路由和拒绝学习效果。
