使用参数优化的多阶段图卷积网络和 Transformer 模型进行人类活动识别的特征融合
原文中文,约200字,阅读约需1分钟。发表于: 。使用深度学习模型(如卷积神经网络和 Transformer)进行人类活动识别,研究表明特征融合对于改善活动识别系统的准确性和稳健性具有重要意义。使用 HuGaDB、PKU-MMD、LARa 和 TUG 数据集,PO-MS-GCN 和 Transformer 模型在准确性上进行了训练和评估,PO-MS-GCN 模型在效果上优于其他先进模型,并且特征融合在不同数据集上改善了结果。
本文提出了一种基于自监督技术的特征学习方法,适用于无标签的传感器数据。该方法可用于人类活动识别等领域,通过转化识别任务提供监督信号,提取有价值的特征。在智能手机环境下的无人监督、半监督和迁移学习情况下,性能与完全监督网络相当甚至更好。该技术可广泛应用于其他领域。