本文提出了一种简单高效的解决方案,通过集成多个组成语言模型的预测来区分人工生成文本和人类作者文本。实验证明,该方法在生成文本分类上性能提升范围在0.5%到100%之间。研究还发现,替换商业限制的生成预训练变压器数据为其他开放语言模型生成的数据是可行的替代方法。此外,实验结果显示该方法具有零-shot推广能力。
正在访问的资源需要验证您是否真人。
或在微信中搜索公众号“小红花技术领袖”并关注
第二步:在公众号对话中发送验证码: