本研究提出了一种用于高光谱图像的多任务深度学习模型,能够同时执行多个分类和回归任务。该方法通过共享编码器和任务特定解码器网络进行特征学习,并通过密集空洞金字塔池化层和注意力网络提取多尺度上下文信息,以及通过优化多任务损失的参数来提高模型性能和效率。实验结果表明,该方法优于其他先进方法。
正在访问的资源需要验证您是否真人。
或在微信中搜索公众号“小红花技术领袖”并关注
第二步:在公众号对话中发送验证码: