Adv-Diffusion: 通过潜在扩散模型实施难以察觉的敌对人脸身份攻击
原文中文,约400字,阅读约需1分钟。发表于: 。该研究论文提出了一种统一的框架 Adv-Diffusion,可以在潜在空间而不是原始像素空间中生成不可感知的对抗性身份扰动,利用潜在扩散模型的强大修补能力生成逼真的对抗性图像。通过在周围环境中生成语义扰动的身份敏感条件扩散生成模型,设计了自适应强度的对抗性扰动算法,既能确保攻击的可传递性又能保持隐秘性。在公开的 FFHQ 和 CelebA-HQ...
该研究提出了Adv-Diffusion框架,生成不可察觉的对抗性身份扰动。通过身份敏感条件扩散生成模型,设计了自适应强度的对抗性扰动算法。在FFHQ和CelebA-HQ数据集上实验证明了该方法的卓越性能。