CausalLM 不适用于上下文学习

💡 原文中文,约300字,阅读约需1分钟。
📝

内容提要

本研究发现,基于因果变换的语言模型(如GPT-3)在没有显式位置编码的情况下仍然具有竞争力。实验结果显示,这种模型通过网络获取隐含的绝对位置概念,从而弥补了缺失的信息。因果注意力使模型能够推断每个令牌可以关注的前任数,从而近似其绝对位置。因此,因果语言模型除了显式的定位机制外,还可以从因果掩码的影响中推导出位置意识。