自动数据校正的混合整数投影改进住院患者败血症预测

原文中文,约500字,阅读约需1分钟。发表于:

机器学习模型在自动化临床决策中起着越来越重要的作用。我们介绍了一种基于投影的创新方法,将临床专业知识作为领域约束无缝融合,生成可用于机器学习工作流的重要元数据。通过捕捉生理和生物限制患者生命体征和实验室数值的高维混合整数规划,我们可以利用数学 “投影” 的力量纠正电子病历数据中的患者数据错误。我们测量修正后的数据与定义健康范围的约束之间的距离,得到一个称为 “信任分数”...

研究人员提出了一种基于投影的创新方法,将临床专业知识与机器学习工作流相结合,生成重要的元数据。通过捕捉患者生命体征和实验室数值的高维混合整数规划,可以纠正电子病历数据中的错误。通过测量修正后的数据与健康范围约束之间的距离,得到了一个称为“信任分数”的预测指标。这些分数提供了对患者健康状况的见解,并显著提高了机器学习分类器在临床环境中的性能。

相关推荐 去reddit讨论
  1. 模块化:Mojo🔥 如何实现比 Python 快 35,000 倍的加速 – 第二部分
    在本博客文章中,我们将继续优化Mandelbrot集合问题,并将速度提高到Python的26,000倍。我们将分享使用的技术,并讨论Mojo的优势。第三部...
  2. 模块化:Mojo🔥 - 它终于来了!
    自从5月2日推出Mojo编程语言以来,已有超过120,000名开发者注册使用Mojo Playground,19,000名开发者在Discord和GitH...
  3. 模块化:Mojo🔥如何实现比Python快35,000倍的速度提升——第一部分
    本文介绍了Mojo编程语言在Mandelbrot集合问题上的性能优化,通过类型注释、严格模式和简化计算等方法,实现了46倍至89倍的速度提升。与NumPy...
  4. 模块化:Python程序员轻松入门Mojo🔥
    本文介绍了Mojo编程语言,从Python程序员的角度出发,通过一个简单的例子展示了Mojo的语法和性能优势。文章指出Mojo与Python语法相似,但在...
  5. 模块化:在Python🐍中使用Mojo🔥
    本文介绍了在Mojo中使用Python模块和包的方法,包括查找和加载模块和包、使用venv创建虚拟环境和使用Conda安装libpython。文章提供了示...
  6. Modular:我们筹集了1亿美元以改善全球开发者的AI基础设施
    Modular宣布获得1亿美元新融资,加速实现全球开发者AI基础设施愿景。他们的下一代AI开发者平台改善了AI的可编程性、可用性、可扩展性、计算效率和硬件...
  7. Modular:发布 MAX 开发者版预览
    Modular推出了Modular Accelerated Xecution (MAX)平台,旨在简化在不同硬件平台上部署AI模型。MAX包括先进的AI编...
  8. ACME的使用经验
    ACME是一个自动管理证书的程序,有多种实现,本文介绍了acme.sh的使用。安装、申请、安装证书、续签证书等步骤都有详细说明。在Windows环境下使用...
  9. 新 Mac 支持雷雳 5 了,但你真的需要它吗?
    USB-C是一种接口形状,可以与不同协议、速率和充电功率混搭。USB-C解决了线缆插入问题,但工作正常与否取决于支持的协议。USB-C线缆的兼容性还取决于...
  10. Meta 宣布推出 AI 驱动的视频生成器 Movie Gen
    Meta推出Movie Gen AI视频生成器,可通过文本生成高清视频并添加音效,还能编辑现有视频和图像。由于成本高和生成时间长,暂不公开发布。工具引发版...