利用非正式逻辑增强系统化分解的自然语言推理
💡
原文中文,约300字,阅读约需1分钟。
📝
内容提要
通过构建和评估基于证明的文本蕴涵树,提出了一种一致且理论基础的方法来注释解构蕴涵的数据集。生成的RDTE数据集在内部一致性上比以前的数据集高出9%,并通过在现代神经符号推理引擎中使用RDTE导向的蕴涵分类器进行训练,显著提高了文本推理的结果。