揭示大型语言模型在 Transformer 模型之上对孟加拉语自然语言推理的优势:一项全面研究
原文中文,约700字,阅读约需2分钟。发表于: 。通过综合评估,本研究在低资源语言(如孟加拉语)的自然语言推理任务中评估了知名大型语言模型和最先进模型的性能,发现虽然大型语言模型在少样本情况下可以达到与微调后最先进模型相媲美或优越的性能,但需要进一步研究来提高我们对大型语言模型在类似孟加拉语等资源有限的语言中的理解。该研究强调了在不同语言环境中探索大型语言模型能力的持续努力的重要性。
该研究使用GPT 3.5、GPT 4和DepGPT等模型,对Reddit和X数据集进行分类,创建了孟加拉社交媒体抑郁数据集(BSMDD)。DepGPT模型在零样本学习和少样本学习场景中表现优异,准确度和F1分数接近完美。该研究强调了LLM在各种语言环境中的有效性和灵活性,为抑郁症检测模型提供了深入信息。