文章评估了边缘计算和微控制器上的量化及对抗样本的有效性。量化会影响决策边界和梯度,可能增强或减弱噪声。输入预处理对小扰动有效,但对大扰动效果差。基于训练的防御方法能增加决策边界距离,量化后仍有效,但需解决量化偏移和梯度失调问题,以应对对抗样本的迁移性。
正在访问的资源需要验证您是否真人。
或在微信中搜索公众号“小红花技术领袖”并关注
第二步:在公众号对话中发送验证码: