基于sEMG的物理信息门控递归网络用于建模上肢多关节运动动态

BriefGPT - AI 论文速递 BriefGPT - AI 论文速递 ·

本研究将无源领域适应引入脉冲神经网络,通过膜电位作为记忆列表,提高了系统的准确性。通过新型的脉冲波Jaccard注意力提高了对表面肌电图特征的表示能力。实验结果显示SpGesture在不同前臂姿势中实现了最高的准确率(89.26%),并在CPU上实际部署时展示了低延迟。这些结果显示了SpGesture在实际场景中增强表面肌电图的应用潜力。

原文中文,约300字,阅读约需1分钟。
阅读原文