慢特征分析与后继表示之间的关系

💡 原文中文,约400字,阅读约需1分钟。
📝

内容提要

本研究通过主成分分析(PCA)研究ResNet-18在CIFAR-10上的特征表示对分类性能的影响。结果表明,仅需20%的特征空间方差即可实现高精度分类,前100个主成分决定了k-NN和NCC的性能。研究还与神经崩溃现象相关联,并通过线性仿射模型展示了三种可解释的特征表示,其中仿射线性模型效果最佳。

阅读原文 分享