差分隐私联邦学习:系统性综述

BriefGPT - AI 论文速递 BriefGPT - AI 论文速递 ·

本文介绍了一个解决数据异构性和隐私保护挑战的联邦迁移学习框架,利用多个异构源数据集的信息增强目标数据集上的学习能力。提出了“联邦差分隐私”的概念,为每个数据集提供隐私保证。研究了一维均值估计、低维线性回归和高维线性回归等统计问题。展示了联邦差分隐私是介于本地和中央模型差分隐私之间的中间隐私模型。强调了数据异构性和隐私的基本成本,以及跨数据集的知识迁移的好处。

原文中文,约400字,阅读约需1分钟。
阅读原文