基于神经辐射场的工业机器人应用中的新视角合成
原文中文,约300字,阅读约需1分钟。发表于: 。本研究评估了 Neural Radiance Fields 在工业机器人应用中的潜力,并提出了一种替代 Structure from Motion 预处理的方法,通过基于机器人运动学的度量尺度确定了精确的相机姿态,表明在具有挑战性的场景中具有明显优势,并展示了在缺乏真实数据的情况下,应用集成方法估计合成新视图的质量的初步结果。
本文介绍了一种新的街景神经辐射场模型(S-NeRF),通过改进参数化函数和学习神经表示来解决现有模型在街景合成中的问题。实验证明S-NeRF模型在大规模驾驶数据集上优于现有方法,减少了均方误差并提高了移动车辆渲染的PSNR。