TRRG:基于跨模态疾病线索增强的大型语言模型以实现真实的放射科报告生成
《Radiology Report Generation(R2Gen)》展示了多模态大型语言模型(MLLMs)如何自动化生成准确和连贯的放射学报告。通过引入新的策略SERPENT-VLM,该模型在IU X-ray和Radiology Objects in COntext(ROCO)数据集上优于现有的基线方法,并在嘈杂的图像环境中具有稳健性。这一研究为医学成像领域的自监督完善研究打开了新的研究路径。
原文中文,约500字,阅读约需2分钟。