多策略优化下的正向文本重新构建
原文中文,约400字,阅读约需1分钟。发表于: 。该篇论文提出了一个多策略优化框架(MSOF),旨在解决使用预训练语言模型进行正向重构时遇到的挑战。通过设计正面情感奖励和内容保持奖励,激励模型将原始文本的负面表达转为正面表达,同时保持语义的完整性和一致性。然后,引入不同的解码优化方法来提高文本生成的质量。最后,基于正向重构的建模公式,提出了一种多维度重新排序方法,从策略一致性、文本相似性和流畅性三个维度进一步选择候选句子。在两个...
该论文提出了一个多策略优化框架(MSOF),用于解决预训练语言模型正向重构的挑战。通过奖励机制和解码优化方法,提高文本生成质量。实验证明该框架在正向重构任务上取得了显著改进。