本文提出了一种新的联邦表示学习框架,使用相似度蒸馏对全局模型进行训练,以实现在通信成本和隐私保护的限制下的可行性。实验证明该方法在多种数据集上能够以可比较的结果实现多种设置下的性能。
正在访问的资源需要验证您是否真人。
或在微信中搜索公众号“小红花技术领袖”并关注
第二步:在公众号对话中发送验证码: