自然语言处理中检索增强的生成模型:综述
原文中文,约300字,阅读约需1分钟。发表于: 。大型语言模型和检索增强生成技术在各个领域取得巨大成功,但仍存在幻觉问题、知识更新问题和缺乏领域专长等关键问题。本文回顾了检索增强生成技术的显著技术,特别是在检索器和检索融合方面,并提供了教程代码以实现这些代表性技术。此外,本文讨论了检索增强生成技术的训练方法和应用,并探讨了其未来发展方向和挑战。
Retrieval-Augmented Generation (RAG)是一种合并检索方法和深度学习技术的方法,旨在通过动态整合最新的外部信息解决大型语言模型(LLMs)的静态限制,并改进LLMs输出的准确性和可靠性。该研究将RAG分为四个类别,并提供了详细的视角和评估方法,同时介绍了其演进和领域的进展。该研究还提出了面临的挑战和未来的研究方向,旨在巩固现有的RAG研究,并突出其扩展LLMs的适应性和应用潜力。