本文提出了SigGPDE,一种新的稀疏变分推理框架,专门用于处理序列数据上的高斯过程。该框架通过诱导变量实现稀疏近似,避免了矩阵求逆,并证明了GP签名核的梯度是双曲型偏微分方程的解,从而优化了ELBO。SigGPDE在大规模数据集上显著提高了计算效率和分类性能。
正在访问的资源需要验证您是否真人。
或在微信中搜索公众号“小红花技术领袖”并关注
第二步:在公众号对话中发送验证码: