本研究提出了一种新的对称前向-前向算法(SFFA),旨在改善神经网络学习中的固有缺陷。通过对每一层进行正负神经元的分割,SFFA有效地创建了对称的损失环境,提升了分类任务的准确性。研究结果表明,SFFA适用于持续学习的情境,能够适应新知识并防止灾难性遗忘。
正在访问的资源需要验证您是否真人。
或在微信中搜索公众号“小红花技术领袖”并关注
第二步:在公众号对话中发送验证码: