RSC-SNN:通过随机平滑编码探讨脉冲神经网络中对抗鲁棒性和准确性之间的权衡

BriefGPT - AI 论文速递 BriefGPT - AI 论文速递 ·

本研究提出了一种新型的对抗性鲁棒稳态脉冲神经网络(HoSNN),利用阀值自适应泄漏积分火(TA-LIF)神经元模型来抵御脉冲神经网络(SNNs)对抗性攻击的易感性。实验结果显示,HoSNN在CIFAR-10上展示了固有的鲁棒性,对FGSM和PGD攻击的准确率分别提高到72.6%和54.19%。通过最小程度的FGSM对抗训练,HoSNN在CIFAR-10上对FGSM攻击和PGD攻击的准确率分别超过了以往模型的29.99%和47.83%。这一发现为加强SNNs的对抗鲁棒性及防御提供了新的生物学原理视角。

原文中文,约500字,阅读约需2分钟。
阅读原文