通过信念传播引导超级学习者的标签比例学习
原文中文,约300字,阅读约需1分钟。发表于: 。通过学习标签比例 (LLP),我们提出了一种新的算法框架,其中迭代地执行伪标签和嵌入改进两个主要步骤,利用 Gibbs 分布和 Belief Propagation,在不牺牲计算效率的情况下,取得了标签比例学习问题上的显著改进。
本文介绍了一种使用深度神经网络和新正则化层 Batch Averager 的方法,将有标注数据的深度神经网络转换为无标注学习的方法。作者通过 Twitter 用户的 tweets 和个人资料图片,预测 Twitter 用户的性别和种族 / 民族信息,并发现深度 LLP 方法在文本和图片分类方面均优于基线方法,并且协同训练算法可以将文本和图片分类的绝对 F1 值分别提高 4%和 8%。最后,采用文本和图片分类器的集合进一步平均提高了绝对 F1 值 4%。