图灵奖得主Yoshua Bengio新作:Were RNNs All We Needed?
原文中文,约5700字,阅读约需14分钟。发表于: 。自Transformer模型出现后,研究者重新关注RNN模型。Yoshua Bengio团队提出minLSTM和minGRU,通过去除隐藏状态依赖,实现并行训练,提高速度和效率。实验显示,这些模型在多项任务中表现优异,尤其在长序列任务中表现突出,显示了RNN的潜力。
自Transformer模型出现后,研究者重新关注RNN模型。Yoshua Bengio团队提出minLSTM和minGRU,通过去除隐藏状态依赖,实现并行训练,提高速度和效率。实验显示,这些模型在多项任务中表现优异,尤其在长序列任务中表现突出,显示了RNN的潜力。