参数量暴降,精度反升!哈工大宾大联手打造点云分析新SOTA

💡 原文中文,约2900字,阅读约需7分钟。
📝

内容提要

哈工大与宾大联合推出的PointKAN基于Kolmogorov-Arnold网络(KANs)进行点云分析,性能优于传统多层感知机(MLPs)。PointKAN通过Efficient-KANs结构显著减少参数量,同时保持高精度,尤其在小样本学习中展现出强泛化能力。

🎯

关键要点

  • 哈工大与宾大联合推出PointKAN,基于Kolmogorov-Arnold网络(KANs)进行点云分析。
  • PointKAN性能优于传统多层感知机(MLPs),在小样本学习中展现出强泛化能力。
  • PointKAN-elite版本使用Efficient-KANs结构,显著降低参数量,同时保持高精度。
  • KANs使用可学习函数替代固定激活函数,能够更好地捕捉复杂几何特征。
  • PointKAN框架包含几何仿射模块、局部特征处理和全局特征处理三个部分。
  • Efficient-KANs通过有理函数替代B样条函数,提高了计算效率并减少了参数量。
  • 实验结果显示PointKAN在多个下游任务上表现优异,尤其在小样本学习任务中。
  • 研究团队期待PointKAN推动KANs在点云分析领域的应用,发挥其独特优势。
➡️

继续阅读