QuantAgent:通过自我提升的大型语言模型在交易中寻找圣杯
我们提出了一种新方法来增强大型语言模型(LLMs),通过训练知识矿工LLMiner自动从相关文档中提取问题和答案对,并将其与对话数据集结合来微调LLM,从而提升其在特定领域的专业知识和对话能力。该模型在新的评估基准上表现出显著的性能改进,并且只需要少量的种子实例,为LLMs通过模型合成的训练数据实现自我改善提供了可能性。
原文中文,约300字,阅读约需1分钟。
我们提出了一种新方法来增强大型语言模型(LLMs),通过训练知识矿工LLMiner自动从相关文档中提取问题和答案对,并将其与对话数据集结合来微调LLM,从而提升其在特定领域的专业知识和对话能力。该模型在新的评估基准上表现出显著的性能改进,并且只需要少量的种子实例,为LLMs通过模型合成的训练数据实现自我改善提供了可能性。