本文研究了大型语言模型(LLMs)的能力,特别关注于推进链式思维提示的理论理解。通过引入一个适用于自然语言生成的两级分层图模型,建立了一个具有吸引力的几何收敛率,用于衡量 LLMs 生成的思维链条与真实语言起源的思维链条之间的相似度。研究发现为 LLMs 能够产生正确的思维序列提供了理论上的证明。
正在访问的资源需要验证您是否真人。
或在微信中搜索公众号“小红花技术领袖”并关注
第二步:在公众号对话中发送验证码: