大型语言模型为何能生成准确的思路连贯?
原文中文,约400字,阅读约需1分钟。发表于: 。本文研究了大型语言模型(LLMs)的能力,特别关注于推进链式思维提示的理论理解。我们探究了如何有效诱导 LLMs 生成连贯的思维链条。为实现此目标,我们引入了一个适用于自然语言生成的两级分层图模型。在这一框架下,我们建立了一个具有吸引力的几何收敛率,用于衡量 LLMs 生成的思维链条与真实语言起源的思维链条之间的相似度。我们的发现为 LLMs...
本文研究了大型语言模型(LLMs)的能力,特别关注于推进链式思维提示的理论理解。通过引入一个适用于自然语言生成的两级分层图模型,建立了一个具有吸引力的几何收敛率,用于衡量 LLMs 生成的思维链条与真实语言起源的思维链条之间的相似度。研究发现为 LLMs 能够产生正确的思维序列提供了理论上的证明。