DePT是一种新的参数高效微调方法,通过将软提示分解为较短的软提示和一对低秩矩阵并使用两个不同的学习率进行优化。在23个自然语言处理和视觉语言任务上的实验表明,DePT在某些情况下优于最先进的参数高效微调方法,包括完全微调基线。此外,DePT在模型规模增大时更加高效,并且适用于少样本学习设置和各种模型架构和规模。
正在访问的资源需要验证您是否真人。
或在微信中搜索公众号“小红花技术领袖”并关注
第二步:在公众号对话中发送验证码: