利用知识注入学习提高多模态营销中的上下文一致性
原文中文,约500字,阅读约需2分钟。发表于: 。通过将常识知识图与大型视觉语言模型结合,改进了多模态营销活动的效果预测,并实现了对可能具有说服力的多模态活动的早期检测以及对营销理论的评估和增强。
本综述论文研究了多模态大型语言模型(MLLMs),该模型整合了类似于 GPT-4 的大型语言模型(LLMs),用于处理文本和视觉等多模态数据。MLLMs 展示了生成图像叙述和回答基于图像的问题等能力,缩小了人与计算机之间的差距,并暗示了通向人工智能的潜在途径。然而,MLLMs 仍面临处理多模态语义差距的挑战,可能导致错误生成,对社会造成潜在风险。选择适当的模态对齐方法至关重要,因为不恰当的方法可能需要更多参数,并且性能改进有限。该论文旨在探讨 LLMs 的模态对齐方法及其现有能力。实施模态对齐使得 LLMs 能够解决环境问题并提高可访问性。研究调查了 MLLMs 中现有的模态对齐方法,分为四个组:(1)多模态转换器将数据转换为 LLMs 可以理解的格式;(2)多模态感知器改善 LLMs 对不同类型数据的感知能力;(3)工具辅助将数据转换为一种常见格式,通常是文本;以及(4)数据驱动方法教导 LLMs 理解数据集中特定类型的数据。这个领域仍处于探索和试验阶段,我们将组织和更新各种现有的多模态信息对齐研究方法。