基于元转换网络的动态长期时间序列预测
本文研究了基于Transformer的神经网络模型在负荷预测中的效果,并通过多种元启发式算法比较了各模型的性能。结果显示,元启发式增强的Transformer-based神经网络模型在负荷预测准确性方面表现出潜力,并提供了最佳超参数。
原文中文,约300字,阅读约需1分钟。
本文研究了基于Transformer的神经网络模型在负荷预测中的效果,并通过多种元启发式算法比较了各模型的性能。结果显示,元启发式增强的Transformer-based神经网络模型在负荷预测准确性方面表现出潜力,并提供了最佳超参数。