净化上的对抗性训练(AToP):增强鲁棒性和泛化能力
通过使用生成模型进行对抗性净化,新的框架语言引导对抗净化(LGAP)展示了很强的对抗性防御性能。LGAP利用预训练的扩散模型和字幕生成器来防御对抗性攻击,经过评估证明了其提高对抗性鲁棒性的有效性。LGAP的性能优于现有的对抗性防御技术,无需专门的网络训练,为进一步研究提供了有希望的方向。
原文中文,约300字,阅读约需1分钟。
通过使用生成模型进行对抗性净化,新的框架语言引导对抗净化(LGAP)展示了很强的对抗性防御性能。LGAP利用预训练的扩散模型和字幕生成器来防御对抗性攻击,经过评估证明了其提高对抗性鲁棒性的有效性。LGAP的性能优于现有的对抗性防御技术,无需专门的网络训练,为进一步研究提供了有希望的方向。