本文介绍了一种新的方法,使用有限元算子网络(FEONet)结合深度学习和传统的数值方法来解决参数化偏微分方程。该方法成功解决了多个基准问题,展现出更高的精确度、泛化能力和计算灵活性。此外,该方法还展示了在模拟具有不同边界条件和奇异行为的复杂领域中的潜在应用前景,并提供了有限元逼近在数值分析中支持该方法的理论收敛性分析。
正在访问的资源需要验证您是否真人。
或在微信中搜索公众号“小红花技术领袖”并关注
第二步:在公众号对话中发送验证码: