自适应增长:实时卷积神经网络层扩展
原文中文,约200字,阅读约需1分钟。发表于: 。基于数据输入,本研究提出了一种新算法,允许卷积神经网络的卷积层在动态环境下进行演化,并无缝地整合到现有的 DNNs 中。通过引入核函数,迭代性地评估图像特征的识别能力,本方法在多个数据集上展示了优于监督方法的表现,并在迁移学习场景中展示了增强的适应性,填补了深度学习中对于动态环境更灵活高效的 DNNs 的空白。
本研究提出了一种新算法,允许卷积神经网络的卷积层在动态环境下进行演化,并无缝地整合到现有的 DNNs 中。通过引入核函数,迭代性地评估图像特征的识别能力,本方法在多个数据集上展示了优于监督方法的表现,并在迁移学习场景中展示了增强的适应性,填补了深度学习中对于动态环境更灵活高效的 DNNs 的空白。