参数高效微调与适配器
原文中文,约400字,阅读约需1分钟。发表于: 。该研究介绍了一种新的适应方法,使用 UniPELT 框架作为基础,并添加了 PromptTuning 层,从而在保持竞争力的同时显著减少了可训练参数的数量。该方法利用适配器实现了预训练模型向新任务的有效转移,无需重新训练基础模型参数。通过对三个不同数据集进行评估,研究结果表明,该基于适配器的方法在性能上与全模型微调、DAPT+TAPT 和 UniPELT...
该研究使用UniPELT框架和PromptTuning层提出了一种新的适应方法,减少了可训练参数的数量。通过对三个数据集的评估,结果表明该方法在性能上与其他策略相当,但需要更少的参数。研究强调了适配器在高性能和资源消耗方面的潜力。