DR-RAG: 将动态文档相关性应用于检索增强问答生成
原文中文,约300字,阅读约需1分钟。发表于: 。通过将外部知识库融入到 Retrieval-Augmented Generation (RAG) 中,提出了一种名为 Dynamic-Relevant Retrieval-Augmented Generation (DR-RAG)的两阶段检索框架,用于改善文档检索的召回率和答案的准确性,同时保持高效性,通过对检索到的文档的贡献进行分类确定相对相关的文档,实验证明 DR-RAG...
Retrieval-Augmented Generation (RAG)是一种合并检索方法和深度学习技术的方法,旨在通过动态整合最新的外部信息解决大型语言模型(LLMs)的静态限制,并改进LLMs输出的准确性和可靠性。该研究将RAG分为四个类别,并提供了详细的视角和评估方法,同时介绍了其演进和领域的进展。该研究还提出了面临的挑战和未来的研究方向,旨在巩固现有的RAG研究,并突出其扩展LLMs的适应性和应用潜力。