低样本目标学习:互斥偏差

BriefGPT - AI 论文速递 BriefGPT - AI 论文速递 ·

该论文研究了低样本物体学习(LSME)与互斥偏见的关系,并提供了新的数据集、基线和方法。LSME旨在正确地将未知对象与类别标签相关联。研究者分析了数据生成流程和影响难度的因素,并评估了多种基线模型的性能。他们提出了一种优于最先进模型的基线方法。

原文中文,约400字,阅读约需1分钟。
阅读原文