该文介绍了一种高效的仅权重量化方法,以减少大型语言模型在实际应用中的内存需求和推断成本。该方法适用于混合专家模型和密集模型,并且无需额外的微调。通过自适应的量化粒度进行解决,展示了该方法的有效性。在大规模开源模型上评估,展示了最小的准确性损失,并在相同数量的 GPU 上实现了高达 3.65 倍的吞吐量。
正在访问的资源需要验证您是否真人。
或在微信中搜索公众号“小红花技术领袖”并关注
第二步:在公众号对话中发送验证码: