自反性不确定性:大型语言模型是否了解其内部答案分布?
This paper was accepted at the Workshop on Reliable and Responsible Foundation Models (RRFMs) Workshop at ICML 2025. Uncertainty quantification plays a pivotal role when bringing large language...
本文探讨了在大型语言模型(LLMs)中量化不确定性的重要性,提出通过LLMs的输出空间来描述不确定性,并研究现代LLMs在总结思维时的表现,利用自反距离测量字符串与字符串分布的关系。
