GraphRAG太慢LightRAG延迟高?华东师大新方法一招破解双重难题
💡
原文中文,约3300字,阅读约需8分钟。
📝
内容提要
华东师大Planing Lab团队提出的E²GraphRAG方法显著提升了GraphRAG的索引速度和查询效率,构建时间为GraphRAG的1/10,查询时间为LightRAG的1/100,有效解决了现有RAG方法的效率问题。
🎯
关键要点
- 华东师大Planing Lab团队提出E²GraphRAG方法,显著提升GraphRAG的索引速度和查询效率。
- E²GraphRAG的构建时间为GraphRAG的1/10,查询时间为LightRAG的1/100。
- 现有RAG方法依赖文本知识库,难以实现对整个文档知识库的全局理解。
- RAPTOR和GraphRAG方法通过聚类和图构建来引入不同粒度的信息,但开销较重。
- LightRAG和FastGraphRAG方法尝试减少大模型调用开销,但仍存在问题。
- E²GraphRAG使用SpaCy进行实体识别,构建实体图和文档总结树,提升效率。
- 构建阶段包括文档分块和利用LLM递归总结文档树,节约token消耗。
- 检索阶段根据问题内容自动选择local或global检索方式,提供伪代码说明。
- 实验结果显示E²GraphRAG在资源受限情况下表现良好,达到了效率与性能的均衡。
- 该方法在文档token数量增加时,构建索引时间以最低斜率线性增长,具备扩展性。
🏷️
标签
➡️