LLM 教育中的知识蒸馏
原文中文,约500字,阅读约需2分钟。发表于: 。本研究提出了一种方法,将大型语言模型(LLMs)的知识提炼为一个更小、更高效且准确的神经网络,以实现在资源受限设备上部署这些模型的挑战。我们的方法包括使用 LLM 的预测概率训练较小的学生模型,作为教师模型,通过专门设计的损失函数来学习 LLM 的输出概率,确保学生模型能够准确模仿教师模型的性能。通过对包括 6,684...
本研究提出了一种方法,将大型语言模型(LLMs)的知识提炼为一个更小、更高效且准确的神经网络,以实现在资源受限设备上部署这些模型的挑战。通过对测试数据集的比较,结果显示提炼的学生模型能够比原始神经网络模型获得更高的准确率。此外,学生模型的参数大小相较于原始输出模型减小了100倍和10倍。该研究为自动评分在典型教育环境中的运用提供了潜力。