基于深度度量学习和量子计算的研究,提出了一种新的量子极化度量学习方法(QPMeL)。该方法通过经典模型学习极坐标形式的量子比特参数,并结合浅层的参数化量子电路和可训练的量子门层进行训练,以实现更好的多类别分离效果。与现有方法和经典网络相比,QPMeL方法表现更好,为未来研究提供了有前景的方向。
正在访问的资源需要验证您是否真人。
或在微信中搜索公众号“小红花技术领袖”并关注
第二步:在公众号对话中发送验证码: