本研究提出了一种新方法,通过挖掘层间依赖性优化大型视觉-语言模型的量化策略,解决多模态推理中的效率问题。实验显示,该方法在13B LLaVA模型上实现了2.78倍的内存压缩和1.44倍的生成速度提升,同时保持性能。此外,还探讨了量化感知规模学习和稀疏化技术的应用。
正在访问的资源需要验证您是否真人。
或在微信中搜索公众号“小红花技术领袖”并关注
第二步:在公众号对话中发送验证码: