【Triton 教程】低内存 Dropout
原文中文,约4700字,阅读约需12分钟。发表于: 。Dropout 是在中引入的一种技术,用于改善低数据条件下深度神经网络的性能,通常用于正则化。它接受一个向量作为输入,并生成相同 shape 的输出向量。输出中的每个标量都有概率 p 被设为零,否则直接从输入复制。这使得网络在仅有输入的 1−p 标量时也能表现良好。在评估阶段,为了充分利用网络的能力,将 p 设为 0。但是简单地将 p 设为 0 会增加输出的范数,可能会人为地降低输出的...
Triton是一种基于Python的并行编程语言,旨在高效实现深度神经网络计算内核。本文介绍了如何使用Triton实现内存高效的Dropout,通过单个种子管理状态,减少内存占用并简化管理。示例代码展示了如何生成一致的Dropout掩码,从而提升性能。