相位流形中的运动中间插值

BriefGPT - AI 论文速递 BriefGPT - AI 论文速递 ·

本文介绍了一种新颖的数据驱动的动作插值系统,通过使用周期自编码器学习到的相位变量,在混合专家神经网络模型中实现人物的目标姿势。该方法通过聚类动作的专家权重,在空间和时间上生成一系列姿势序列。实验结果表明,使用相位进行动作插值任务可以使插值动作更加清晰稳定,并能合成更具挑战性的运动。该框架在动作质量和泛化性方面与最先进的方法相竞争,适用于游戏和电影行业中的动画人物序列的快速原型工作流程。

原文中文,约500字,阅读约需2分钟。
阅读原文