💡
原文中文,约25300字,阅读约需61分钟。
📝
内容提要
在医疗行业,医生与药厂需有效沟通专业术语。随着医学文献增多,快速匹配治疗方案变得困难。客户希望通过大模型优化文献检索,结合向量检索与全文检索,提高医疗文献的召回精度,以满足用户需求。
🎯
关键要点
- 医疗行业需要医生与药厂有效沟通专业术语。
- 医学文献增多使得快速匹配治疗方案变得困难。
- 客户希望通过大模型优化文献检索,提高医疗文献的召回精度。
- 制药客户面临如何快速找到合适治疗方案和药品的痛点。
- 传统的全文检索方法对医疗术语的处理效果不佳。
- 生成式AI的发展为优化医疗文献检索提供了可能。
- 使用检索增强生成方案(RAG)结合向量检索与全文检索。
- pgvector插件在Aurora PostgreSQL中用于高效存储和检索向量数据。
- 通过提取关键字并创建倒排索引实现全文检索。
- 双路召回方案提高了文档召回的精确度。
- 向量相似性检索能够识别拼音表示城市和省市别称。
- 向量检索和全文检索的结合可以适应更多用户场景。
- 方案成功降低了Medical data的目标,但仍需进一步优化。
➡️