利用大模型 embedding 结合 Aurora PostgreSQL 实现医疗术语检索增强生成的解决方案
原文中文,约25300字,阅读约需61分钟。发表于: 。在这篇博客中,我们将讨论使用双路召回的方式来优化医疗文献检索。其一是利用大模型对所有医疗文献的摘要进行 embedding,输出的向量数据存储到向量数据库;用户检索时,把用户输入的医疗术语进行 embedding 向量化,在向量数据库中进行相似性检索,找到最相似的文档。其二是通过对文献的摘要提取关键字,存入 Aurora PostgreSQL...
在医疗行业,医生与药厂需有效沟通专业术语。随着医学文献增多,快速匹配治疗方案变得困难。客户希望通过大模型优化文献检索,结合向量检索与全文检索,提高医疗文献的召回精度,以满足用户需求。