深度唤醒:一种 RGB-D 伪装物体检测的深度 - 感知 - 注意力融合网络
原文中文,约300字,阅读约需1分钟。发表于: 。本文提出了一种新颖的深度感知注意力融合网络,利用深度图作为辅助输入,增强网络感知三维信息的能力,从而改善伪装物体检测。通过使用特定的编码器提取色彩和深度信息,并引入深度加权的交叉注意力融合模块来动态调整深度和 RGB 特征图的融合权重。最后,采用简单而有效的特征聚合解码器自适应地融合改进的聚合特征。实验表明,我们提出的方法在伪装物体检测方面具有显著的优势,进一步验证了深度信息在其中的贡献。
本文提出了一种新颖的深度感知注意力融合网络,利用深度图增强网络感知三维信息的能力,改善伪装物体检测。实验证明该方法具有显著优势,验证了深度信息的贡献。