自监督神经网络的无穷宽度极限
本研究探讨了自监督学习中宽神经网络的核行为与损失函数之间的关系。通过分析Barlow Twins损失下的两层网络,证明了当网络宽度趋近无穷大时,NTK变为常数,从而为理解宽神经网络提供了理论基础,并推导了泛化误差的界限。
原文中文,约300字,阅读约需1分钟。
本研究探讨了自监督学习中宽神经网络的核行为与损失函数之间的关系。通过分析Barlow Twins损失下的两层网络,证明了当网络宽度趋近无穷大时,NTK变为常数,从而为理解宽神经网络提供了理论基础,并推导了泛化误差的界限。