本文介绍了三种模型并行的训练方法:数据并行、张量并行和流水线并行。数据并行适用于大规模数据集的训练,将训练数据按batch维度划分到多个worker设备上并行计算。张量并行适用于巨大型模型,将模型的某些张量按行或列划分到不同设备上并行计算。流水线并行适用于序列数据的长模型训练,将整个模型按层划分为多个连续的阶段,每个阶段由一个设备负责计算。
正在访问的资源需要验证您是否真人。
或在微信中搜索公众号“小红花技术领袖”并关注
第二步:在公众号对话中发送验证码: